

Addressing Challenges in Sustainable Vaccine Productions and R&D industry's Views on Technology Transfer

HHS-WHO International Vaccine Technology Workshop
Hyderabad, India (17-18 September 2010)
Michel Baijot (GSK) on behalf of IFPMA

Poverty: a broad issue

- > in 2009, 1.4 billion people lived on less than \$4 a day
- > A billion people don't have access to drinking water
- > A billion people suffer from hunger
- Nearly one million people die each year of malaria, 1.8 million of tuberculosis, and 2 million of AIDS
- Poverty keeps some 72 million children out of school and prevents them from realizing their potential

Heathcare for All: a public health failure?

In 2009:

- 30,000 children under 5 years of age die every day, mainly due to dehydration, undernourishment, and vaccine-preventable diseases
- About a third of the world's population lacks adequate access to quality of health care, including vaccines

Gaps in Immunization

- Nearly 30 million children born every year are not fully immunized
- DTP vaccination rate in Africa has lowered around 50% over the past 15 years
- Before GAVI, it often took 10-20 years before the introduction of "new vaccines" in developing countries
- Lack of investment in vaccines against diseases prevalent in developing countries (so called "neglected diseases")

Factors Affecting Access to Healthcare & Vaccines

- Underlying general situation
 - Poverty
 - Political stability (wars and conflicts)
 - Political willingness (& corruption)
 - Cultural barriers
- Programmatic factors:
 - Lack of health infrastructure (health care system and logistics)
 - Lack of precise policy plans & long-term forecasting
 - Financial (pricing & reimbursement, distribution costs)
 - Capacity building
 - Regulatory issues (requirements, review timelines)

Technology Transfer is not the only factor that impacts access to care and to vaccines

Addressing Challenges in Sustainable Vaccine Production

An effective response to healthcare challenges and access to vaccines in the developing world embraces many elements including:

- Political will
- Improved healthcare infrastructure
- Appropriate industrial policy solution
- Affordability of the product
- > Funding

Definition of Technology Transfer

- What is Technology Transfer?*
 - Transfer of skills, knowledge, technologies, methods of manufacturing, quality management systems, samples of manufacturing and facilities
- To whom
 - Within or outside an organization, a geography or an industry/discipline/sector
- > Why
 - To increase access to scientific and technological developments
 - To allow further development/adaptation and exploitation of the technology into new products, processes, applications, materials or services
- > However,
 - In some circumstances, Tech transfer is a condition imposed by governments on companies seeking to supply products in their countries

^{*}Adapted from http://en.wikipedia.org/wiki/Technology_transfer

Types of Technology Transfer

- A wide range of health-related technologies can be transferred to developing countries:
 - R&D capacity
 - Clinical trials
 - Laboratory testing
 - Quality assessment
 - Supply chain management and logistical issues
 - Training of personnel is crucial
 - Information technology systems
 - Project / human resource management
 - Local production
- Many of these are not solely in the remit of industry

Technology Transfer is Considered by Different Stakeholders as a way to:

- 1. Increase vaccine access and capacity
- 2. Lower Cost of Goods
- 3. Increase employment and wealth
- 4. Stimulate local industry and entrepreneurship
- 5. Share Know-How
- 6. Share Intellectual Property

In essence:

Give a man a fish, he'll eat for a day! Teach a man to fish, he'll eat for lifetime

Tech transfer is not new as History shows

Four Eras of Vaccination, Four Eras of Tech Transfer

Vaccine Tech Transfer has mirrored the Vaccine industry evolution

- 1. Heroic era (before1930s)
 - Heroically led artisanal revolutions
- 2. National public health (1930s → 1990s)
 - National vaccine institutes
 - Growing complexity, sophistication and regulations
 - Divergence between Developed and Developing World
- 3. Global vaccination programs (1960s → 2000s)
 - Smallpox, Polio
 - UNICEF, EPI, CVI, GAVI
- 4. Era of privatization and biotechnology (~1990 → to date)
 - Rapid reduction in number of national and commercial producers
 - Future supply and innovation from unsubsidized producers dependant on:
 - Know-how and appropriated IP
 - Sustainability/ profit (price, quantity and cost of goods)

1. Heroic Era (before 1930s)

- Low-Tech/Artisanal → Low cost
- Low or No Regulatory Hurdles
- No or Low Quality Standards
- Tech Transfer by Single Person Study/Communication

Making yellow fever vaccineprobably

Smallpox (Vaccinia) vaccine

2. Era of National Public Health Institutes Involvement (1930s → 1990s)

But Rapid Divergence Between Developed Countries.....

New vaccines

- Polio (Salk & Sabin)
- Measles
- Mumps
- Hepatitis B
- Meningococcus
- Haemophilus influenza
- Combinations

New technologies

- Culture on chick embryos (Goodpasture, Walter Reed, 1931)
- Tissue culture (Enders, 1949)
- Recombinant vaccines (1980s)
- Conjugate vaccines (1980s)
- Plus improved production and assay techniques

New regulations

- "Jim" and Biologicals Act:1902
- Cutter incident: 1955, led to creation of Division of Biologics Standards in NIH, now FDA
- GMP and management of input materials 1963 and 1976
- Management of air pressure 1978/87
- WHO developed a prequalification system 1989(?)
- Documentation and Team Biologics -1990s
- Many more regulatory and quality standards

.....and Less Developed Countries

- > Many small scale producers, e.g., 74 rabies vaccine producers in 1984
- Frequent GMP problems
- Did not make new vaccines
 - OPV, not IPV
 - Whole-cell pertussis, not acellular
- Independence and conversion of colonial public health systems into national ones with limited resource
- Some exceptions, e.g., Brazil
- Lack of major scientific research programs until Brazil, China, India in 1980s
- Diverging Vaccination coverage:
 - Industrialized countries: 60 %
 - Latin America: 38 %
 - South Asia: 5 %
 - East Asia: 5 %
 - Middle East: 25 %
 - Sub-Sahara Africa: 5 %

Increased Demand, Increased Cost, Increased Regulations and Price Pressure

- Global programs required increased supply at minimum cost/profit
- Increasing costs of R&D, quality and production
- EPI/UNICEF faced severe shortages and high prices as suppliers merged and reached capacity limits during 1990s
- 10 of 14 developed-world manufacturers partially or totally stopped production of traditional vaccines during 1998-2001 (UNICEF)

Number of Developed-World Vaccine Manufacturers

4. Contemporary Era: Privatization and Biotechnology (~1990 →)

- Small Number of Large Producers and emerging or re-emerging smaller producers who have to bear increased and/or increasing
 - Costs of Research and Development
 - Costs of Production facilities
 - Risks of litigation
 - Shareholder growth/profit expectations (otherwise risk to invest into other sectors)

Importance of a Solid R&D-Based Industry

Pipeline diversification increases chances of success

Research & Development Cycle

Key Considerations for Technology Transfer Today

Tech Transfer is a Long, Expensive and Risky Exercise (no quick fix)

It requires

- At least two committed partners (ultimately to reach similar expertise level)
- Stable political climate (sustainable commitment)
- A 5-10 yrs process
- \$ hundreds of million (from somewhere)
- Skilled workers (or trainable workers) to carry out R&D and high-tech manufacturing
- A supportive regulatory environment (stringent quality, safety and efficacy criteria)
- An independent Official Medicines Control Laboratory (no double standard)
- Strong political will and commitment (demonstrated by prioritization of immunization in health budget)
- Appropriate Intellectual property (IP) protection
- A predictable commercial environment (economy of scale)
- Assurance it will really improve access and/or decrease cost/price

Tech transfer applies usually to "mature" technologies (experience is prerequisite)

A stepwise progression of tech transfer is preferred:

Packaging and distribution

Bulk transfer, fill and finish

Bulk production

Fools rush in where angels fear to tread: Stepwise Approach to Tech Transfer in Vaccines

International Federation of Pharmaceutical Manufacturers & Associations

A stepwise approach securing downstream processes prior to developing bulk production capacity

Phase 1

Packaging and **Distribution of Finished Product**

Implementation of:

- Basic Quality Control
- Labeling
- · Cold chain
- Distribution network
- Adverse event reporting

Phase 2

Phase 1 Plus Filling of Bulk

Implementation of:

- · Sterile filling unit
- · Sterility assurance
- QC expertise
- Validated suppliers
- Quality Assurance

Phase 3

Phase 2 Plus **Production of Active Principle**

Implementation of:

- Engineering
- Bulk production expertise
- Sustainability
- · Economic viability

Examples of Vaccine Tech Transfer and Joint Venture Programs

Partners	Types of vaccines
Bharat Biotech (India) – Wyeth (Pfizer)	Hib
Bio Farma (India) – Biken	polio, measles
Bio Kangtai (China) – sanofi pateur	JE, influenza
Bio Manguinhos (Brazil) – Biken	Measles, polio, rubella
Bio Manguinhos (Brazil) – GSK Bio	Hib, MMR, OPV, pneumococcal conjugate, Rotavirus
Biological E (India) – Intercell	JE
Birmex (Mexico) – sanofi pasteur	influenza
Butantan (Brazil) – sanofi pasteur	influenza
China – GSK	Various vaccines, including influenza
China – Merck	НерВ
Egypt - GSK	DTP-HepB, MMR, Meningitis, OPV
India - GSK	Various vaccines
India - Novartis	rabies
Panacea Biotech (India) – Novartis	DTP-Hib
Russia – GSK	Various vaccines
Thailand – Merck (Nobilon)	influenza
Ukraine – GSK	MMR

Technology Transfer & Local Production is Ongoing for Influenza Vaccines

COUNTRY	PRODUCTION INITIATIVE	COMPANY
Brazil (Sept 2009)	Agreement with Butantan to produce and supply pandemic influenza H1N1 vaccines to Brazilian government; vaccine formulation, filling and packing in Brazil	sanofi pasteur
Mexico (Mar 2009)	Agreement to build a facility to manufacture seasonal and pandemic influenza vaccines in collaboration with Birmex, a Mexican federal vaccine manufacturer	sanofi pasteur
WHO / Thailand (Feb 2009)	License granted to WHO for egg-based seasonal and pandemic live-attenuated influenza vaccine technology; WHO to sub-license to developing country public sector vaccine manufacturers; Thailand is the 1st country to request sub-license	Merck & Co. (Nobilon)
China, Hong Kong & Macau (Nov 2008 / June 09)	Joint venture agreement with Shenzhen Neptunus Interlong Bio- Technique Co Ltd to develop & manufacture seasonal influenza vaccines and pre-pandemic / pandemic influenza vaccines	GSKBio
China (Nov 2007)	Agreement with the Chinese authorities to build a facility to manufacture seasonal and pandemic influenza vaccines	sanofi pasteur
Indonesia	Agreement with Bio Farma to build a facility to manufacture seasonal influenza vaccines	Biken
Brazil (1999)	Agreement with Butantan to build a facility to manufacture seasonal influenza vaccines	sanofi pasteur

GSK - FIOCRUZ

Conclusions: Sustainable Vaccine Production

- Tech Transfer is <u>not the only factor</u> that determines access to care and vaccines
- Industry is not opposed to Tech Transfer, but it <u>must be</u> voluntary: requires 2 committed partners
- Tech Transfer can only be considered by the R&D-based industry when the conditions for success are met
- In many circumstances, for very good reasons tech transfer is <u>not possible</u>, in this case the R&D-based industry ensures access to vaccines though the <u>tiered pricing mechanism</u>
- Maintaining a <u>free and healthy market</u> is key to ensure the sustainability of innovation and affordability of vaccines